Research Associate

Department of Dairy Science

UW Madison

(2000-2003)

Estimating nitrogen loss from dairy cow manure

Vinicius R. Moreira and Larry D. Satter

Department of Dairy Science / UW-Madison
USDA-ARS DFRC

04/09/03

Synopsis of activities

Modeling N losses

Assumptions for the dairy cow:

- 13-month calving interval: 310d lactation + 55d dry in a year, producing one calf;
- Primiparous accounted for ~1/3 of the herd (some N retention);
- Rolling-herd average: 9100kg milk with 3.2%CP;
- Dry matter intake: 23.2kg/d while lactating and
 12.5kg/d for the dry period;
- Dietary CP: 17.5% and 13.5% for lactating and dry period diets, respectively

Conventions

N retained

General objective

• To evaluate the impact of dairy manure management on N loss from the moment of excretion until the manure storage facility is emptied, using N to P ratio.

N and P flow thru a lactating dairy cow

By difference: 336gN & 47gPN/P = 7.15

Milk = 27.8kg/d 3.13%CP (137gN/d) 0.09%P (25gP/d)

Sources for N and P loss from dairy production systems

1N€

∆L

1N

1N&P

ĴΝ]Ν&Ρ

N and P flow

Data-set analysis

- 1496 analyses from:
 - Minnesota;
 - Pennsylvania;
 - Wisconsin.

Data-set analysis

- Characterization:
 - Manure management practice;
 - Liquid slurry storage loading method;
 - Liquid slurry storage coverage;
 - Type of cow bedding used;
 - Season.

Data-set – Storage management

Data-set – Percent of N-NH₃ by manure storage management

Data-set – Storage loading method

Data-set – Storage coverage

- Objective
 - To estimate N disappearance from dairy manure from excretion until storage is emptied using P as a marker (N to P ratio).

- Materials and methods
 - 13 farms were selected;
 - Samples collected:
 - Manure samples: collected throughout emptying of storage facility;
 - Sampling period: March 27th through May 29th 2001

Materials and methods

- Information:
 - Diet nutrient composition (CP and P)
 - Housing (type and management);
 - Milk records and diet composition (N and P);
 - Manure storage (type and management);
 - Hauling schedule.

Materials and methods

 Sample processing was similar to that of Validation Protocol;

- TN analyses were done in half of the subsamples that were lyophilized.

• Results

	pН	T (°C)	DM (%)	TN (%DM)	Ash (%DM)	P (%DM)	N:P
Overall avg	7.31	14.98	12.28	3.33	36.7	0.63	5.54
Sand bedding	7.40	15.6	15.2	2.79	51.2	0.47	5.91
Sawdust bedding	7.19	14.1	8.73	3.99	19.2	0.81	5.09
Stdev	0.48	5.30	4.38	0.82	17.4	0.21	0.82
CV	6.58	35.4	35.7	24.6	47.4	33.5	14.9
Max	8.52	23.7	19.8	4.34	58.3	0.92	6.49
Min	6.85	6.34	6.73	1.74	17.1	0.36	4.03

FARM	4	5	6	
Nutrients intake (kg/cow/d)				
TN	0.742	0.707	0.730	
TP	0.112	0.110	0.116	
Nutrients secreted in milk (kg/cow/	d)			
Milk N	0.168	0.177	0.208	
Milk P	0.031	0.032	0.038	
Nutrient excreted in manure (kg/co	w/d):			
TN (g)	0.574	0.531	0.522	
TP (g)	0.081	0.078	0.078	
N/P	7.05	6.80	6.72	
Manure Analyses				
TN (%DM)	2.881	4.337	3.649	
TP (%DM)	0.521	0.814	0.586	
N/P	5.39	5.51	6.45	
% estimated N loss	23.5	19.0	4.0	
Scraping frequency	2	-	2	
Bedding	Sand	Sawdust	Sand	
Manure storage	Top loaded pit	Slatted floor w/ pit underneath barn	Top loaded pit	
Storage period	2-4wks	6mo	24h	

On-Farm Estimations of Nitrogen Losses Through Storage (% excreted N)

Free stall - Pilot trial

Moreira, V. R., H. H. B. Santos, and L. D. Satter

- Objectives
 - To evaluate the use of N to P ratio for estimating N disappearance from manure;
 - To develop a methodology for sampling and processing manure from free-stall floor;
 - To determine N disappearance from free-stall.

Free stall - Pilot trial

Materials and methods

	Free-stall
Dates	Feb 9-10 th 2001
# Groups (pens)	2
# Cows	96 early to mid-lactation dairy cows
Diets	2 (P = .38 & .55%DM; same N=3.08%DM)
DMI	Estimated
MY	Individually (35 and 33.4kg/cow/d; CP=3.10%)
# scraping per day	6-10 (run automatic and manually)
Sampling	3x (7:00pm; 1:00am; 9:00am)

Free stall - Pilot trial

Free stall – Pilot trial Conclusions

- Care should be exercised to minimize urine contamination between pens;
- It seems possible to estimate N loss from dairy manure in free-stall barn using N to P ratio;
- Due to different urine/feces ratio of excretion in front and back alleys, N loss can only be presented as a range.
- N loss appear to be low in winter (air $T < 10^{\circ}C$).

Hypothesis

• Scraping frequently will reduce N loss during Summer.

Objective

• To evaluate the effect of scraping frequency on N disappearance, as estimated by N to P ratio.

Materials and Methods

- Treatments:
 - Floors were scraped 2 or 6-times a day;
 - Times (2 24h periods):
 - 2x: 8am and 7pm;
 - 6x: 9am, noon, 3pm, 6pm, 11pm, 4am.
- Design and schedule:
 - Cross-over design;

Materials and Methods

- Cows & diets:
 - 137 mid-lactation dairy cows;
 - $\overline{\text{Milk yield}} = 30\text{-}32\text{kg/cow/d} (3.20\%\text{CP});$
 - Diet: P = .38 & .55%DM; same N = 3.08%DM;
 - DMI was calculated based on NRC (2001) model.

Sampling Protocol

- Processing and analyses:
 - For N:
 - Acidified (67%H₂SO₄);
 - Frozen immediately;
 - Freeze-dried and ground 1mm screen.
 - Leco N analyzer.
 - For P:
 - DM analyses;
 - Ground 1mm screen;
 - DCP analyses.

Results

	Scrap	Scraping frequency (Freq)						
	2x		6x			Effects (<i>P</i> ≤)		<i>P</i> ≤)
Manure analyses	Front alley	Back alley	Front alley	Back alley	SEM	Freq	alley	Day *Freq
pН	7.73	8.15	7.84	8.04	0.14	1.00	0.01	0.43
Manure T, °C	21.7	23.2	22	22.3	0.52	0.48	0.29	0.23
Dry matter, %	10.7	11.6	11.4	11.9	0.48	0.26	0.01	0.71
N, %DM	4.09	4.04	3.86	3.86	0.1	0.03	0.75	0.32
Ash, %DM	16.5	17.9	16.1	16.7	0.51	0.11	0.01	0.05
P, %DM	0.95	0.93	0.96	0.95	0.04	0.67	0.54	0.05
N:P	4.44	4.62	4.16	4.19	0.17	0.03	0.36	0.04

Estimating N Loss

Estimating N Loss

04/09/03

Scraping frequency

Conclusion

Increased scraping frequency does not seem to improve N retention in dairy manure under summer conditions;

Publications and Presentations

- Lab Datasets: ADSA2002;
- Frequency of scraping: ADSA2003, Feedstuffs (Jul/03); Dairy Herd Management (Sep/03);
- On-farm: Discovery Conference (Apr/02);
- Model of N volatilization: Chapter on Ammonia Emissions from Confinement Dairy Operations.